1. 정의 일반적으로, bias는 모델을 통해 얻은 예측값과 실제 정답과의 차이의 평균을 나타낸다. 즉, 예측값이 실제 정답값과 얼만큼 떨어져 있는지를 나타낸다. 만약 bias가 높다고 하면 그만큼 예측값과 정답값 간의 차이가 크다고 말할 수 있다. Bias[ˆf(x)]=E[ˆf(x)−f(x)] variance는 다양한 데이터 셋에 대하여 예측값이 얼만큼 변화할 수 있는지에 대한 양(Quantity)의 개념이다. 이는 모델이 얼만큼 flexibility를 가지는 지에 대한 의미로도 사용되며, 분산의 본래 의미와 같이 얼만큼 예측값이 퍼져서 다양하게 출력될 수 있는 정도로 해석할 수 있다. $$Var[\hat{f}(x)]=E[(\hat{f}(x)-E[\hat{f}(x)]^{2})]..